
(第16回マスフェスタ「一筆書きできる図形の考察」高松第一高等学校より)

1 一筆書きできる図形の判定方法(オイラーによる方法)

奇点…奇数の辺が交わっている頂点 偶点…偶数の辺が交わっている頂点 とすると

一筆書きできる図形の条件

- ①すべての頂点が偶点である
- ②すべての頂点の中で奇点が丁度2つだけあり それ以外は偶点である
- *頂点をうまく切り離していくと 右の①→①' ②は→②'に行きつく。

2 N_V の一般化

任意の点の個数における辺の本数をあらわす関数

V:点の個数

E: 辺の本数

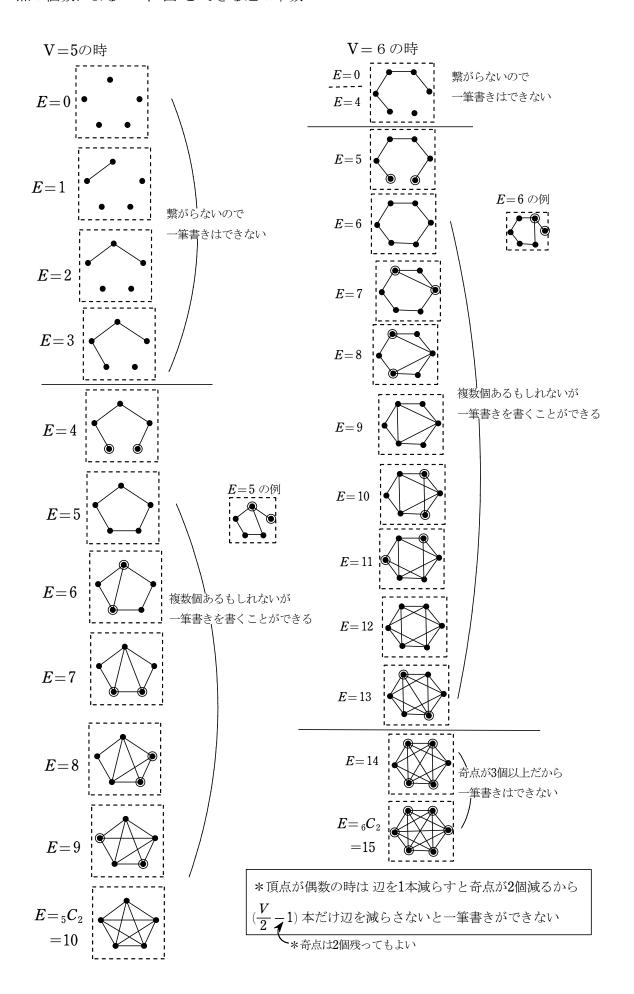
 N_V : 任意の点 Vの個数における一筆書きのできる辺 Eの本数を表す関数

(V,E): 点 V 辺 E のグラフ(図形) と記号を決めます。

* N_V は点Vの個数が決まった時に、一筆書きができるグラフの辺の本数Eの種類の数を調べたものです。図形が何通りできるかを示したものではありません。すなわちその時の辺Eの本数の最大値と最小値を求めて最大値-(最小値-1)でその範囲の数を求め、それぞれのEに対して少なくとも1つは図形が存在することを示します。

N_V の一般化

$$(1)$$
 V が奇数の時 $N_V = {}_V C_2 - (V-2)$ $= \frac{V(V-1)}{2} - (V-2)$ $= \frac{1}{2}(V^2 - 3V + 4)$

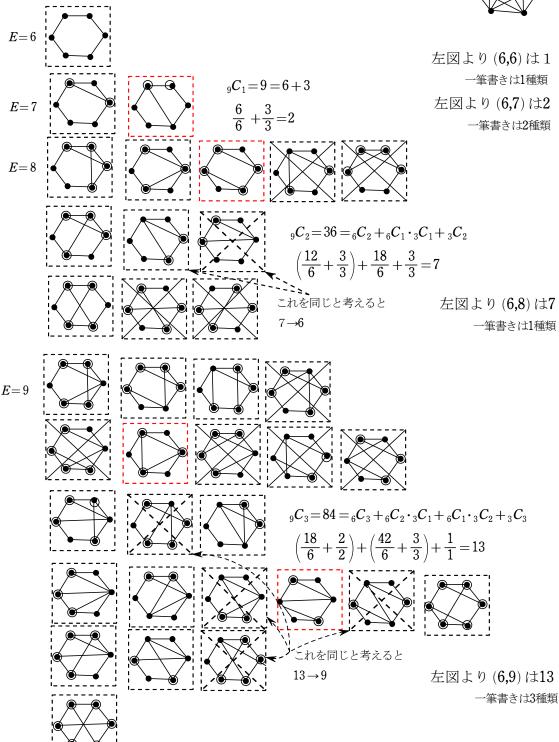

(2) V が偶数の時

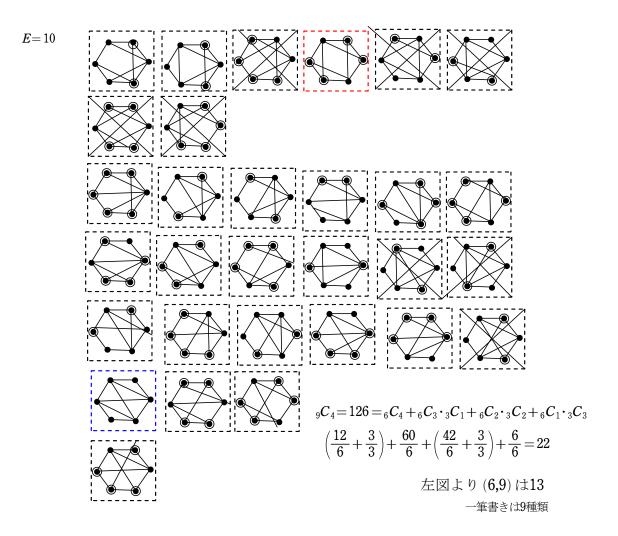
$$\begin{split} N_V &= {}_V C_2 - \left(\frac{V}{2} - 1\right) - (V - 2) \\ &= \frac{V(V - 1)}{2} - \left(\frac{V}{2} - 1\right) - (V - 2) \\ &= \frac{1}{2}(V^2 - 4V + 6) \end{split}$$

$$V=5$$
の時 $N_V={}_5C_2-(5-2)$ $= \frac{5(5-1)}{2}-(5-2)$ $= 10-3$ $= 7$

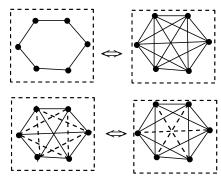
$$V=6$$
 の時 $N_V={}_6C_2-\left(rac{6}{2}-1
ight)-(6-2)$ $=rac{6(6-1)}{2}-2-4$ $=15-6$ $=9$

V=5,V=6 の場合を例にして考えてみましょう。($^{\bullet}$ は頂点 $^{\odot}$ は奇点)




一筆書きの図形の種類を数えるのは難しいので、正六角形の場合にできる図形のすべての種類を調べてみます。

4 正六角形の辺と対角線とでできる図形 (回転して一致するものは1つと考える)


正六角形の対角線の数は $_6C_2-6=9$ このうち短いものが6本長いものが3本ある。

E=11,12,13,14,15については対角線を引くかわりに消せば対応が付くので表を左右対称に拡張すれば出来上がる。

回転して同じものは物は1つと考えると次の表のようになる

THE CHARGE TO CONTRACT OF THE STATE OF THE S											
	辺の本数(E)	6	7	8	9	10	11	12	13	14	15
	図の個数	1	2	7	13	22	22	13	7	2	1

この表では回転以外の同一視ができていない。

それは図の頂点と辺を行列で表すことでプログラムで数えることができる。